Activation of carbon-hydrogen bonds via 1,2-addition across M-X (X = OH or NH(2)) bonds of d(6) transition metals as a potential key step in hydrocarbon functionalization: a computational study.
نویسندگان
چکیده
Recent reports of 1,2-addition of C-H bonds across Ru-X (X = amido, hydroxo) bonds of TpRu(PMe3)X fragments {Tp = hydridotris(pyrazolyl)borate} suggest opportunities for the development of new catalytic cycles for hydrocarbon functionalization. In order to enhance understanding of these transformations, computational examinations of the efficacy of model d6 transition metal complexes of the form [(Tab)M(PH3)2X]q (Tab = tris-azo-borate; X = OH, NH2; q = -1 to +2; M = TcI, Re(I), Ru(II), Co(III), Ir(III), Ni(IV), Pt(IV)) for the activation of benzene C-H bonds, as well as the potential for their incorporation into catalytic functionalization cycles, are presented. For the benzene C-H activation reaction steps, kite-shaped transition states were located and found to have relatively little metal-hydrogen interaction. The C-H activation process is best described as a metal-mediated proton transfer in which the metal center and ligand X function as an activating electrophile and intramolecular base, respectively. While the metal plays a primary role in controlling the kinetics and thermodynamics of the reaction coordinate for C-H activation/functionalization, the ligand X also influences the energetics. On the basis of three thermodynamic criteria characterizing salient energetic aspects of the proposed catalytic cycle and the detailed computational studies reported herein, late transition metal complexes (e.g., Pt, Co, etc.) in the d6 electron configuration {especially the TabCo(PH3)2(OH)+ complex and related Co(III) systems} are predicted to be the most promising for further catalyst investigation.
منابع مشابه
The Nature of Halogen Bonds in [N∙∙∙X∙∙∙N]+ Complexes: A Theoretical Study
The effects of substituents on the symmetry and the nature of halogen bonds in [N∙∙∙X∙∙∙N]+-type systems are presented for the YC5H4N∙∙∙X∙∙∙NC5H5 (Y = NO2, CN, H, CH3, OCH3, OH, NH2, X = Cl, Br, I) complexes. Some structural parameters, energy data and electronic properties were explored with...
متن کاملDFT-PBE, DFT-D, and MP2 Studies on the H2O•••HNH and HOH•••NH2 Hydrogen Bonds in Water-Aniline Complexes
DFT-GGA method of Perdew-Burke-Ernzerhof (PBE) is used with aug-cc-PVTZ, 6-311++G**, and Def2-TZVP large basis sets to study the hydrogen bond interactions between oxygen lone pair as a donor electron with hydrogen atom connected to the aniline’s nitrogen as an electron acceptor (H2O···HNH-Ph), and nitrogen lone pair with hydrogen of water molecule (Ph-H2N···HOH...
متن کاملTransition-state charge transfer reveals electrophilic, ambiphilic, and nucleophilic carbon-hydrogen bond activation.
Absolutely localized molecular orbital energy decomposition analysis of C-H activation transition states (TSs), including Pt, Au, Ir, Ru, W, Sc, and Re metal centers, shows an electrophilic, ambiphilic, and nucleophilic charge transfer (CT) continuum irrespective of the bonding paradigm (oxidative addition, sigma-bond metathesis, oxidative hydrogen migration, 1,2-substitution). Pt(II) insertion...
متن کاملSynthesis of Di and Tetraoximes from the Reaction of Phenylendiamines with Dichloroglyoxime
2,5,10,13-Tetraazatricyclo [12,2,2,26,9] icosa-1(16),6,8,14,17,19-hexene-3,4,11,12-tetraone tetraoxime (1a) and 2,5,11,14-tetraazatricyclo [13,3,1,16,10] icosa-1(19),6,8,10(20),15,17-hexaene-3,4,12,13-tetraonetetraoxime (1b) were obtained from condensation of 1,4- and 1,3-phenylendiamine with dichloroglyoxime, respectively. The reaction of 1,2-phenylendiamine with dich...
متن کاملPalladium(ii)-catalyzed synthesis of dibenzothiophene derivatives via the cleavage of carbon-sulfur and carbon-hydrogen bonds.
A new process has been developed for the palladium(ii)-catalyzed synthesis of dibenzothiophene derivatives via the cleavage of C-H and C-S bonds. In contrast to the existing methods for the synthesis of this scaffold by C-H functionalization, this new catalytic C-H/C-S coupling method does not require the presence of an external stoichiometric oxidant or reactive functionalities such as C-X or ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 129 43 شماره
صفحات -
تاریخ انتشار 2007